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Abstract. The solution of the elastic field in bimaterials due to a circular dislocation loop of 
arbitrary orientation within one of the materials is presented. The bimaterial is idealized as 
two semi-infinite isotropic elastic solids either perfectly bonded logether or in frictionless 
contact witheachother at the planar interface. The solutionisobtained simply by integrating 
the linear superposition of the solutions for the nuclei of strain in a bimaterial over the surface 
ofthecut formally usedtogenerate thedislocation. It isshownthatexistingsolutionsforthe 
loop lying in a plane parallel to the interface either inside one of the materials or at the 
interface between the two remi-iniinitesolidsarespecialcasesofthe present generalsolution. 

1. Introduction 

The previous studies of a circular dislocation loop for which the elastic fields, energy 
and Peach-Koehler force can be put into tractable forms are the circular prismatic loop 
in an isotropic material (Kroupa 1960, Bullough and Newman 1960); the circular glide 
loop in an isotropic material (Keller 1957 (with corrections given by Kroupa (1962)), 
Marcinkowski and Sree Harsha 19681, the effects of free surfaces on the circular loop 
(Chou 1963, Bastecka 1964), the circular prismatic loop lying in a plane parallel to the 
interface in a bimaterial (Salamon and Dundurs 1971, Dundurs and Salamon 1972), the 
circular glide loop lying in a plane parallel to the interface in a bimaterial (Salamon and 
Dundurs 1971, 1977), the circular prismatic loop lying in the interface in a bimaterial 
(Salamon and Comninou 1979), and the circular glide loop lying in the interface in a 
bimaterial (Salamon 1981). All these solutions are for the dislocation loop lying on a 
plane parallel either to the interface of the bimaterial or to the free surface of the half- 
space. No other loop orientation has been presented. 

It is known that, once the Green function for a point force in an elasticbody is known, 
the fields induced in the body by a dislocation can be constructed by integration (Mura 
1968). The elastic solution for a force applied at a point in a semi-infinite solid hounded 
by a plane was given by Mindlin (1936,1953). The solutions for various nuclei of strain 
were given by Mindlin and Cheng (1950). The elastic solutions for a point force in joined 
semi-infinite solids of different elastic properties were presented by Rongved (1955) for 
the case of perfectly bonded semi-infinite solids, and by Dundurs and Hetenyi (1965) 
for the case when the joined semi-infinite solids are in frictionless contact with each 
other. The elastic solutions for various nuclei of strain in two dissimilar media which are 
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expressed in terms of Galerkin vectors in a manner analogous to the solutions of Mindlin 
and Cheng were given by Yu and Sanday (1991a). There, the complexity for the 
expressions for the displacements and stresses is greatly reduced by expressing the 
Galerkin vectors in terms of biharmonic and harmonic potential functions. 

Tedious calculations are required to pass from the Green function for a point force 
to the displacement for the infinitesimal loop which are needed (to be integrated over 
the area of the loop) to obtain the elastic solutions for the dislocation loop. Using this 
approach and the Green function for the two perfectly bonded half-spaces, Salamon 
andDundurs(l971) successfully obtained thesolutionsforthe prismaticandglide loops. 
Recently, Yu and Sanday (1991b) presented a new method for obtaining the elastic 
solution of an infinitesimal dislocation loop in a bimaterial. The solutions are obtained 
by the linear superposition of the solutions for the nuclei of strain. In the present report, 
the same method is used for obtaining the elasticsolutions for a circular dislocation loop 
with arbitrary orientation in two joined semi-infinite isotropic, elastic solids which are 
either perfectly bonded or in frictionless contact with each other at the planar interface. 
The solutions are obtained directly from the integration of the superposition of the 
Galerkinvectorsfor thenucleiofstrain in the joinedsemi-infinite solidsover the surface 
of the cut formally used to generate the dislocation. 

H Y Yid and S C Sanday 

2. Method of solution 

The bimaterial is idealized as two joined semi-infinite isotropic elastic solids: phase I 
( x 3  3 0) with elastic constants p and v .  and phase I1 (x3 5 0) with elastic constants p' 
and I , ' ,  which have a common interface x 3  = 0. A circular dislocation loop with radius 
a is located within phase I with its centre at point (O,O, c). The Burgers vector of the 
loop is b = (b , ,  b2,  b3), the sign of which is defined by the FS/RH convention, and the 
surface of the cut formally used to generate the dislocation loop is S = (SI, S2, S3). In 
the following, the conventional suffix notation will be used, whereby repeated suffixes 
indicate summation over the values 1, 2, 3, and suffixes following a comma denote 
differentiation with respect to the Cartesian coordinates corresponding to the indicated 
suffixes. The elastic field due to the loop is the linear superposition of the field owing to 
its nine components biSk. A component is called a prismatic loop when j = k and a glide 
loop when j # k. The boundary conditions at the interface x 3  = 0 are. for the perfectly 
bonded bimaterial. 

(1) uI - I1 3 i  - 0 3 ,  U !  = U!' 

and, for the phases in frictionless contact, 

where U :  and U: are, respectively, the displacements and stresses in phase I ,  and U!' and 
U:; are, respectively, the displacements and stresses in phase 11. 
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According to Yu and Sanday (1991b), the Galerkin vectorf' at point rin phase Idue 
to an infinitesimal loop at point r' = (xi, x i ,  x i )  is 

f(r, r') = Db, dSk (9 ;k  + 81, - 4vgk3,~) 

f " ( t ,  r') = Db, dSk (g;i + gi: - 4ugE16,k) 

(3) 

(4) 

and the Galerkin vectorfIL at point r i n  phase I1 is 

where 

D = p/8n(l - v )  

g: and g:' are the Galerkin vectors in phases I and 11, respectively, for the centre of 
dilatation, andg:, andg" are the Galerkinvectorsin phases1 andII, respectively,either 
foradoubleforce(when1 = k)orforadoubleforcewithmoment(whenj# k ) .  Detailed 
expressions for the Galerkin vectors for these nuclei of strain can be found in the paper 
by Yu and Sanday (1991a). By integrating equations (3) and (4) over the surface S, of 
the cut, the Galerkin vector F' at point r i n  phase I due to a circular loop is 

lk. 

According to the relationships between Galerkin vectors and displacements (Mindlin 
1936). one has 

uf(r) = (1/2~)[2(1 - vb?.,, - G.d 

cif'(.) = (1/2,u')[2(1 - u')Fl!, - FL',ki] 

Uli = [ 2 p u / ( l  - Zv)]u6,,S, + 

uy = [2p'v'/(1 - 2v')]u;.m6i, + @ ' ( U ! ' .  L., + U!'.) I.' 

( 7 4  

(76) 

for the point in phase I, and 

for the point in phase 11. The stresses are 

+ 
and 

(8) 

for the point in phases I and 11, respectively. It should be noted that the sequence of 
integration, in equations ( 5 )  and (6), and differentiation in equations (7)  and (8) may be 
interchanged since the integration is done over the coordinate x; and the differentiation 
with respect to the coordinate xi. 

The solution of the elastic field due to a circular dislocation loop of arbitrary orien- 
tation in the bimaterial can then be obtained by using equations (5)-(8) together with 
the Galerkin vectors for different nuclei of strain in the bimaterial given by Yu and 
Sanday (1991a) (or by integrating the results for an infinitesimal look given by Yu and 
Sanday (1991b)). It should be noted that, since the solutions are h e a r  superpositions 
of different nuclei of strain, the boundary conditions, equations (1) and (Z), and the 
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supplementary conditions regarding equilibrium, compatibility, and the vanishing of 
the displacement and stress fields at infinity are automatically satisfied. 

H Y Yu and S C Sanday 

3. Circular loop 

The Galerkin stress vectors for the double forces, the double forces with moment, and 
the centre of dilatation in bimaterials given by Yu and Sanday (1991a) are expressed in 
terms of the biharmonic potential functions RI and RI', the harmonic potential functions 
q', q", @ I  and @I1, and the partial derivatives of these functions. These potential 
functions are 
RI = Ir- r'I R" = / r  - r"I q1 = 1/R' p?" 1/R" 

(9) 
@I = log(R' - L ,) @'I = log(R" + t 2 )  

where 

rJ = (xi ,xi, -xi) ZI = x 3  - x ;  L2 = x3 + x; 
It has been shown that the integration of the harmonic potentials and @over a circular 
disc S, can be expressed in terms of the integrals of the Lipschitz-Hankel type involving 
products of Bessel functions (Gary 1919), and their properties have been considered in 
detail by Eason et a1 (1955). Salamon and Dundurs (1971) and Salamon and Walter 
(1979). With the aid of these integrals, the displacements in the two joined semi-infinite 
solids due to the circular dislocation loop can be obtained as follows. 

3.1. Prismatic loop b3S, 
Equations (5 )  and (6) read, respectively, 

F' = 2Db3 I (gh - 2ugk) dS3 

F" = 2 0 b 3  I (gi\ - 2vg:I) dS3 
(.W SI 

S3 

for the bimaterial. By inserting the Galerkin vectors for the centre of dilatation and the 
double force in the x) direction into equation (10). the displacements are found to be, 
from equation (7), as follows. 

(i) For a perfectly bonded bimaterial, 

U: = -[b,/8n(l - Y)]{(1 - 2 V  - K63j)6 \ , i  + Z 1 6 $ , 3 i  f [1 - 2(1 - V ) @ P  + !d'p)I8i1,t 
+ ( P  - P')P[K'33t@!i - X~'%!X + (1 - 263i)"@!3, + 2a3'%!11iI} (11) 

[l!' = W3/44I[P - (1 - 2&,)K'P'I%., - 2(P'x3 - @)'%:.d. 
(ii) For a bimaterial in frictionlesscontact, 

(4; = -[b3/8~(1 - ~ ) ] { ( l  - 21, -~'33)(@,; + S\!i) + Z I @ , X  + t265!3, 

- 2( 1 - v')pL(Y[( 1 - 2v  - K63i)(8$jr -cl.?&J +XI  (6513, - C&i)I} (12) 



8 3  = Js3 q' dS3 = 2n4(0,1; -1) (i = I,  11) 

J ' (m,p;n)  = J~-Jm(pf )J , ( l ) t "exp( - r l t ' / )d l  (m, n ,p  are integers, i = I ,  11) 
0 

(13) 
p = (x: + xl) '"/a 5' = ( x ,  - c ) / a  6'1 = ( x ,  i- c) /a.  

The functions .Im and .Ip are Bessel functions of the first kind, and order m and p ,  
respectively. The functions .P(m,p; n )  are integrals of the Lipschitz-Hankel type. The 
usual summation convention does not apply in equations ( 1 1 )  and (12).  When c # 0, 
equation (11) is the same as that given by Salamon and Dundurs (1971) and Dundurs 
and Salamon (1972). When c = 0, equation ( 1 1 )  is the same as that given by Salamon 
and Comninou (1979) for the dislocation loop at the interface. 

3.2. Prismatic loop bjSj, j = 1 or 2, and c > a 
Equations (5) and (6) read, respectively, 

F' = 2Dbj 

FT' = 2Db, 

(gh - 2ugE) dS, 

(& - 2v.q:') dS,. 

SJ 

5, 

By inserting the Galerkin vectors for the centre of dilatation and the double force in the 
xi direction into equation (14) ,  the displacements are found to be, from equation (7), as 
follows. 

(i) For the perfectly bonded bimaterial, 

uf = - [ b , / 8 ~ ( 1  - v)][Yj, jJi  - 2[v  + 2(1 - ~)6 i j ]8 : , i  

+ (p - P')6{[(1 - 2 6 d K  + AIyFjji + ~ 3 ~ ~ . \ 1 3 i  

- 2 1 4 1  - 26,,)8?; - 4 v ~ ~ 8 ; ! 3 i  - 2r:811... I d '  -A@!'.,. I.llt 

+ 4(i - Z V ) ~ , ~ X , ~ $ ! ~ ~ }  - [4(1  - ~ ) ( p  -p i ) /& + p')]6ji8j!i 

- 2(1 - V ) p ( K p  - KrB' )63 i@j> j1  (15) 

U!' = - ( , ~ b j / 4 ~ ) { [ 4 / ( ~  + p')][Yj,jji - 61i8j~~ + (1 - 2 ~ ' ) ( p  - p')@'@j,jji] 

- ( K B  + K'B')Yj , j j i  - 4Vp8j.i - [ (2  + K)P - (2  f K ' ) p ' ] @ j , j j j  

+ 2 ( p  - B ' ) X , @ j , j j i  - (KB - K'p ' )Ss@j , j j } .  



0: = J zl@ dS, = Yj + @; dx3 

0:' =I z2@" dS, = Yj' + @,!I dx, 

Jl(m, p ;  n )  = Io= ~ ~ ( p l t ) ~ ~ ( t ) t n  exp ( - -L 'I: ') dt  

p1 = [ x i  + ( x 3  - C ) ~ ] I / ~ / ~  for j = 1 
p" = [xs + (x3 + c)z]Ia/a for j = 1 
The usual summation convention does not apply in equations (15) and (16). 

3.3. Glide loop b,S3, j = 1 or2 

Equations (5) and (6)  read, respectively, 

$1 J 
s, I 

(m, n , p  are integers, i = I ,  11) 

p ' = [ x : + ( ~ ~ - c ) ~ ] l ~ ~ / a f o r j = ~  
p" = [x: + (x3 + ~ ) ~ ] ' , ~ / a  for j = 2. 

. .  

F" = Db, Is, (gB + gjl) dS3. 

By inserting the Galerkin vectors for the double forces in the x1 and x3 directions with 



15'1 
c @i = q5' dS3 = %a2 7 J ' ( O ,  1; -2) 

= Is, q 5 ' I  dS3 = - h a 2  !$!J1'(O,l; -2) 

andthehnctionsOi, ffi',J1andJ'1areasgiveninequation(13). Theunusualsummation 
convention does not apply in equations (19) and (20). When c f 0, equation (19) is the 
same as that given by Salamon and Dundurs (1971,1977). When c = 0, equation (19) is 
the same as that given by Salamon (1981) for the dislocation loop at the interface (note 
that, owing to a printing error, in Salamon's expression for U: the term cos(20) should 
read cos e). 

3.4. Glide loop b3Sj, j = I or2, and c > a 

Equations (5) and (6) read, respectively, 

F' = Db3 is, kij + &) dSj 

F" = Db, I (gii + gj!) dSj .  
(22) 

si 

By inserting the Galerkin vectors for the double forces in the x, and x 3  directions with 
the moment about the x2 axis for j = 1, and the double forces in the x2 and x3 directions 
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with the moment about the x1 axis for j = 2 into equation (22), the displacements are 
found to be, from equation (7), as follows. 

(i) For perfectly bonded bimaterial, 

H Y Yu and S C Sanday 

uf = -[b3/8iT(1 - v)]pPjJ3; - 2(1 - v)(6i;q,:.3 + 6,8;,j) 

+ (p - y')p{K(26,, - 1)Y?,> - 2r3W! I 1331 

+ 2(1 - - /"p + P')l@j;q!3 - a3i.4:: + @!!it) 

- (PB - p'b?@)!jJl (23) 

+ 4[1 - Y - (1 -2~)63,]X38j>i + 248$3i} 

U!' = -(bJ4Jo{2PLPYU:,,2i - [ z P / ( P  + P')I(dj;ej,3 + 63rej.j) 

- 2!-@ - B()x38;,ji + (1 - 263r)I(P - P') / (P + P') 
- (rP - P'LP')l@;.I;). 

(ii) For bimaterial in frictionless contact 

U: -[b&(l - v)][Y;,,3, - Yj!j3i - 2(1 - ~)[6 j ; (8 f ,3  - 8:!3) 
+ 63,(8;,j - 8j9]  - 2(1 - v')pa{(l - 2v - K63,)Y:ljy + x3w;I,w 

+ 2(1 - v ) s 3 ; q ! ,  - 2[1 - v - (1 - 2v)63i]8;!ii - x;8yl3)D (24) 

t l f l  = (apb3/4~)[(1 - 2 ~ '  - ~'63i)Y/,,ii + ~3Y/ ,p i  + 2(1 - ~')63;8;,~ 

+ 2(1 - v' - 63i)x38;,ii - x:8j,fli]. 

In equations (23) and (24), the functions Y,f, I$, @;, Y;', 8)' and @: are as given in 
equation (17). The usual summation convention does not apply in equations (23) and 
(24). 

3.5. Glide loop bzSl or blSz and c > a 

Equations (5) and (6) read, respectively, 

where j = 1 or 2, b = b2 when j = 1 and b = b1 when j = 2. By inserting the Galerkin 
vectors for the double forces in the x, and x2  directions with the moment about the x, 
axisintoequation (Z), thedisplacementsarefound to be,fromequation(7), asfollows. 

(i) For perfectly bonded bimaterial, 

U', = - [b /h( l  - Y)][Y;,I~~ - 2(1 - v)(6I;@),z + 6Zt$l) 

+ (p - p')/3{[(1 - 2 a 3 ; ) ~  + A]Y:!lZi + 2x3Y/!,; + 4(1 - 2v)6, ,x3~, ,  

x ( a l i q Z  + wf1) - 2 ~ -  ~ a r a  - 
- 7-48;!12i - A@Fla} - - V)(P - P' ) / (P  + ~ ' ) l  

(26) 



4. Summary 

A general method which is easy to apply has been presented to determine the elastic 
field in a bimaterial due to a circular dislocation loop from the elastic solution for the 
nuclei of strain. The bimaterial is idealized as two semi-infinite isotropic elastic solids 
which may be either perfectly bonded or in frictionless contact with each other at the 
planar interface. The methodconsists of obtaining theelastic field due to aninfinitesimal 
dislocation loop by the linear superposition of the Galerkin vectors for the centre of 
dilatation, double forces and double forces with a moment. The elastic field for a 
circular dislocation loop can then be .obtained by integrating these results over the 
surface of the cut formally used to generate the dislocation and is expressed in terms of 
integrals of the Lipschitz-Hankel type. It has been shown that existing solutions for 
dislocation loops that are parallel either to the interface of the bimaterial or to the free 
surface of the half-space and that are either inside the solid or the interface, which had 
previously been obtained through rather tedious and laborious calculations, are special 
cases of the present general solution. Moreover, problems that heretofore had been 
intractable, such as in the case for the arbitrary oriented dislocation loop presented, can 
now be readily solved through the straighforward application of this method. 
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